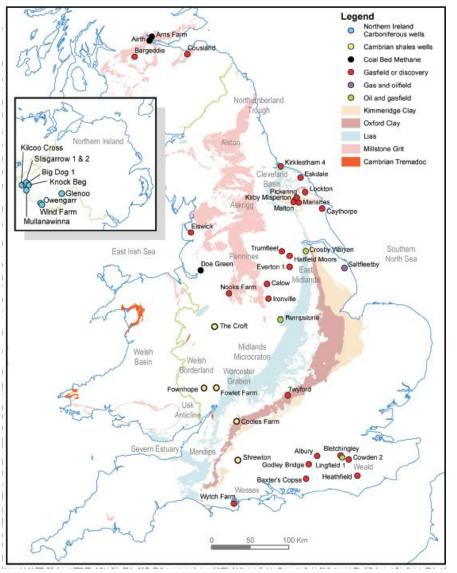


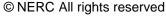
Applied geoscience for our changing Earth

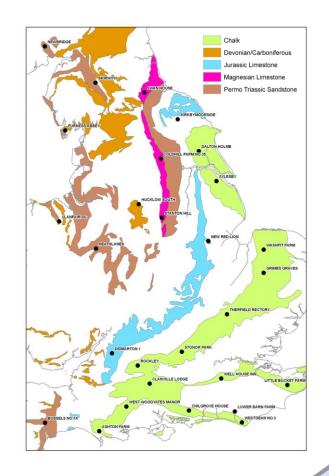
Can shale gas be extracted safely?

Groundwater, well integrity, use of water

Rob Ward Head of Groundwater Science British Geological Survey


© NERC All rights reserved


Introduction


- Groundwater in the UK in relation to shale gas
- Environmental issues associated with Shale Gas:
 - Water requirements and demands
 - Potential pollutants and sources
 - Pollutant pathways
 - Wastewater treatment

Shale and aquifer distribution

Groundwater protection

- Risk-based approach to management and protection: groundwater quality and resources
- Environmental objectives established by EU and UK legislation (e.g. WFD, GWD)
- Proactive and reactive resource protection:
 - Groundwater Protection Policy (GP3)
 - Legal instruments: regulations, permits and notices
 - Supporting tools:
 - Risk assessment tools: GWV maps, SPZs, models
 - Industry codes of practice and guidance
 - Monitoring

Water consumption

 Each well may require 250 – 4000m³ of water to drill, then 7000–23,000m³ for hydraulic fracturing^a. Example of published estimates (per well)^b:

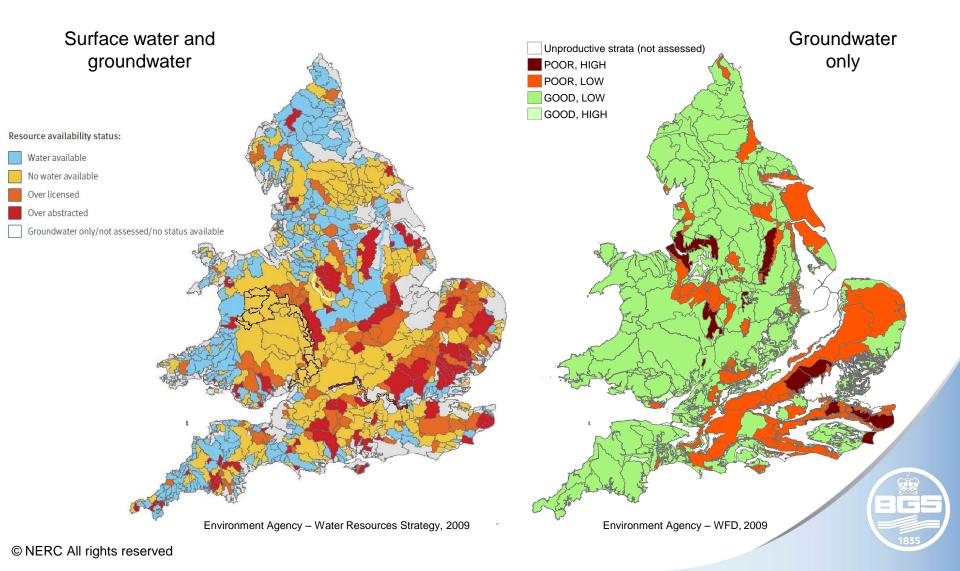
Shale Play	Drilling (m ³)	Fracking (m ³)	Total (m ³)
Barnett (US)	950	14000	14950
Haynesville (US)	2300	19000	22300
Fayetteville (US)	250	19000	19250
Marcellus (US)	300	21000	21300
Eagle Ford (US)	500	23000	23500
Bowland Shale (UK)	900	8400	9300

- Variation reflects complexity of drilling, geological conditions, total depth/number of fracking stages.
- ^a Range obtained from various published sources (mostly US).
- ^b University of Texas (2012) and Cuadrilla

Water demand

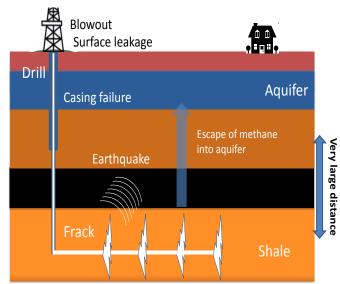
 To meet 10% UK demand from shale gas over 20 year period - projected water requirement^a:

25 - 33 million cubic metres


- Equivalent to an annual water demand of:
 1.2 1.6 million cubic metres
- Licenced annual water abstraction for England and Wales (2010):

12.2 x 10³ million cubic metres^b

- ^a Estimate from Tyndall Centre report (2011)
- ^b http://www.defra.gov.uk/statistics/environment/inland-water/



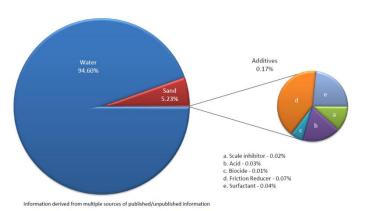
Water resource availability

Contamination concerns

- Methane (shale gas)
- Fracking chemicals
- Flowback fluids and produced water

- Potential routes to groundwater (and other receptors):
 - Geological as a result of fracking
 - Well casing failure
 - Release at surface preparation, storage, transport, disposal

Composition of shale gas


Name	Formula	Typical content (%)
Methane	CH4	70–90
Ethane	C_2H_6	
Propane	C_3H_8	0–20
Butane	C_4H_{10}	
Carbon dioxide	CO ₂	0–8
Oxygen	O ₂	0–0.2
Nitrogen	N ₂	0–5
Hydrogen sulphide	H₂S	0–5
Rare gases	Ar, He, Ne, Xe	Trace
Radon	Rn ²²²	?

from Natural Gas Supply Association, 2010

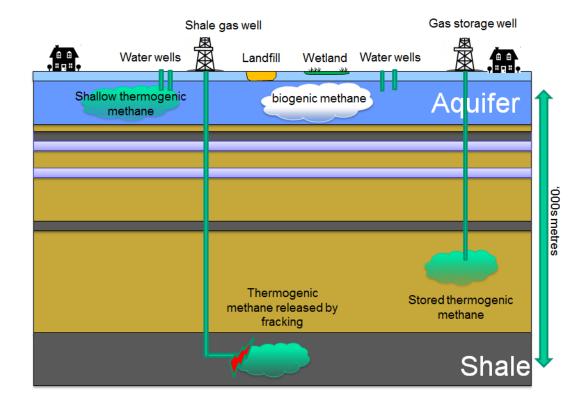
- Hydrocarbons explosive 5-10% methane in air is explosive
- Radon radioactive gas and carcinogenic

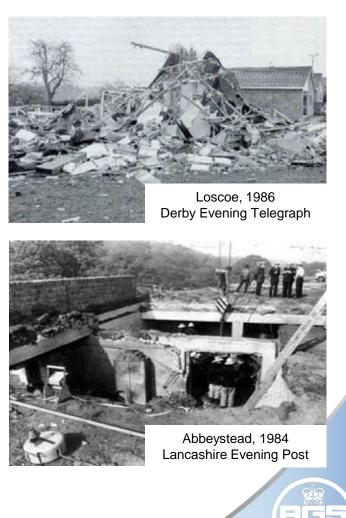
Fracking fluid

Composition of Hydraulic Fracture Fluid (by volume)

Constituent	Composition (% by volume)	Example	Purpose
Water and sand	99.50	Sand suspension	"Proppant" sand grains hold microfractures open
Acid	0.123	Hydrochloric or muriatic acid	Dissolves minerals and initiates cracks in the rock
Friction reducer	0.088	Polyacrylamide or mineral oil	Minimizes friction between the fluid and the pipe
Surfactant Salt	0.085 0.06	Isopropanol Potassium chloride	Increases the viscosity of the fracture fluid Creates a brine carrier fluid
Scale inhibitor pH-adjusting agent	0.043 0.011	Ethylene glycol Sodium or potassium carbonate	Prevents scale deposits in pipes Maintains effectiveness of chemical additives
Iron control	0.004	Citric acid	Prevents precipitation of metal oxides
Corrosion inhibitor	0.002	n,n-dimethyl formamide	Prevents pipe corrosion
Biocide	0.001	Glutaraldehyde	Minimizes growth of bacteria that produce corrosive and toxic by-products
Breaker	0.01	Ammonium persulphate	Allows a delayed breakdown of gel polymer chains
Crosslinker	0.007	Borate salts	Maintains fluid viscosity as temperature increases
Gelling agent	0.056	Guar gum or hydroxyethyl cellulose	Thickens water to suspend the sand
Oxygen scavenger	-	Ammonium bisulphite	Removes oxygen from the water to prevent corrosion

after Gregory, 2011 and Ground Water Protection Council and ALL Consulting, 2009

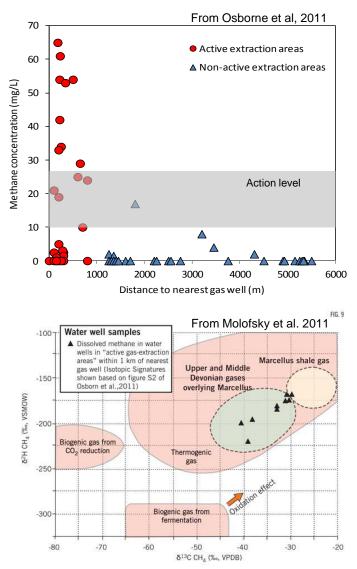

- Estimates of additives component: 0.1 – 2.0%
- Continued development
- Greater openness now in the US
- UK regulation requires
 authorisation
 - Fate of injected fluids:


- 20-80% returns as flowback
- Remainder stays in formation

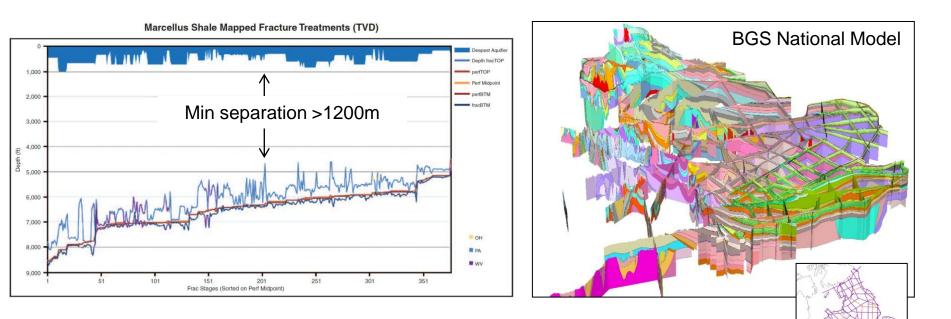
Flowback/produced water

- Flowback reflects fracking fluid composition modified by residual material from drilling and fracking, and some formation water
- Produced water increasingly reflects formation water over time. This may include: metals (e.g. zinc, chromium, nickel), arsenic, sodium, calcium, magnesium, chloride, and NORM (U, Ra)
- Safe handling, storage and disposal of wastewaters is required by EA:
 - Small volumes industrial wastewater treatment plants
 - Larger volumes specialist processing for disposal and/or re-use

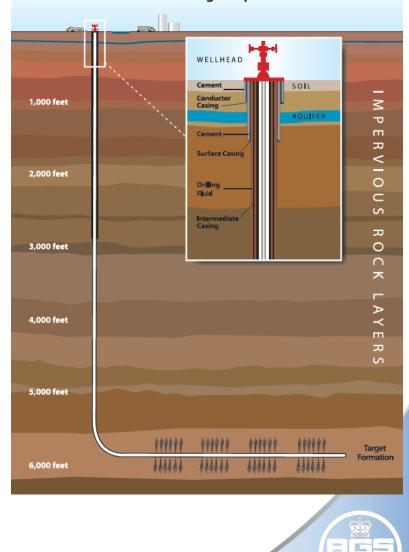
Sources of methane in sub-surface


Methane – basic geochemical props

- Biogenic/bacterial (e.g. wetland, landfill):
 - high C₁/C₂₊ ratio
 - low δ¹³C values (>-64‰) and δ²H (>-175‰)
 - Measurable ¹⁴C
- Thermogenic (e.g. natural gas, coalbed methane):
 - low C₁/C₂₊ ratio
 - higher (less negative) δ^{13} C (<-50‰) and δ^{2} H values (<-240‰)
 - No ¹⁴C


Methane in groundwater

- Methane in groundwater is well known: multiple examples in literature
- Interpretation of the data should consider all possible sources and pathways
- Sub-surface provides multiple potential sources and pathways natural and engineered
- Multiple lines of investigation/evidence needed


Pathways - geological

- Extent of induced fractures limited
- Distance between source and receptor '000s metres
- Multi-layered complex geological sequence

Well design

- Shale gas well design principals same as other oil/gas well design
- Industry standards: API, BS:ISO, HSE
- Well Integrity: material selection and well completion
- Casing: conductor/surface/ intermediate/production
- Well testing:
 - Formation integrity testing
 - Cement bond (CBL/VDL)

Pathways – poor design

Example of Poor well location, design and construction

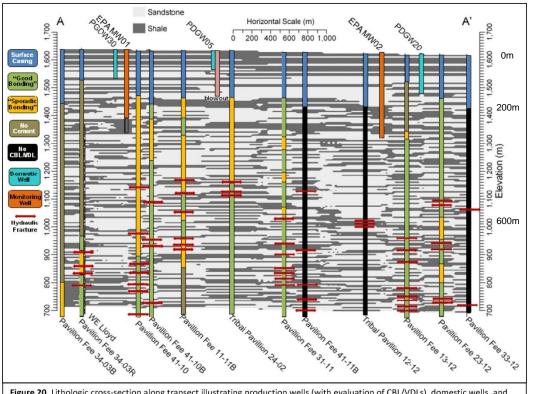
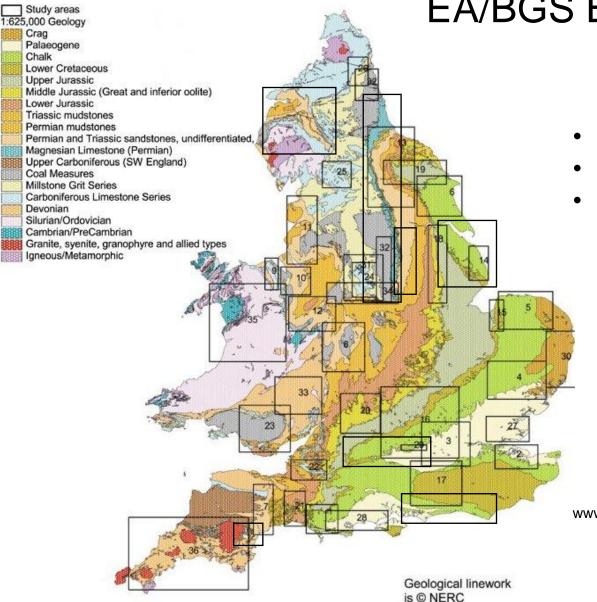
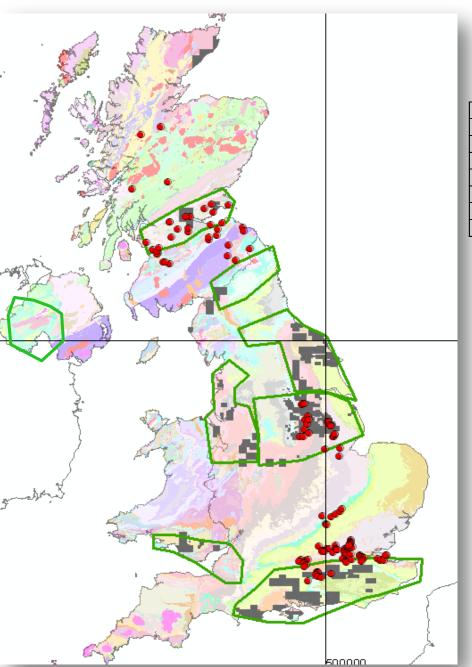



Figure 20. Lithologic cross-section along transect illustrating production wells (with evaluation of CBL/VDLs), domestic wells, and blowout location. Red arrows denote depths of hydraulic fracturing of unknown areal extent. Sandstone units are undifferentiated between fine, medium and coarse-grained units.

- Pavillion, Wyoming
- US EPA investigation into groundwater pollution from unconventional gas production
- Exploitation of gas from 372 m bgl
- Aquifer exploited to 244 m bgl
- Poor design, location, construction:
 - Storage pits
 - Surface casing too shallow
 - No or poor cement seals
- Contamination by methane and other hydrocarbons, fracking chemicals and deep formation waters


Draft report: EPA 600/R-00/000 (USEPA, 2011)

EA/BGS Baseline Project

- 29 reports
- Range of aquifer types
- Common format:
 - geology/hydrogeology
 - environmental data
 - historical/current data
 - hydrochemistry plots
 - geochemical controls
 - evolution of chemistry
 - depth profiles
 - trends

www.bgs.ac.uk/research/groundwater

BGS baseline methane survey

Priority	Area
1	West Lancashire and Cheshire basins
2	Northern Ireland
3	Stainmore Trough and Cleveland Basin
4	Wessex & Weald Basins
5	South Wales coast
6	Midlands (Edale and Widmerpool Gulf; Gainsborough Trough)
7	Northumberland Trough

1. Waters characterised using:

- Dissolved concentrations of CH₄ and CO₂ plus general water chemistry
- DOC
- C and H stable isotopes of CH₄, C-14, stable isotopes of CO₂ and DIC
- Trace organics
- Groundwater residence time indicators (CFCs, SF₆)
- Microbiological indicators

2. Collation of other data

Location of existing groundwater methane analyses (red circles), current onshore UK Petroleum Exploration and Development Licences (grey areas), and key areas of shale gas interest (green outlines)

Summary

- Some potential shale gas areas identified in the UK underlie aquifers. Groundwater protection measures exist and are effective
- Water demand for shale gas production is projected not be significant relative to other uses but local availability may be an issue
- Shale gas exploration/production uses/mobilises chemicals/substances that are potential pollutants. The risks need to be assessed and managed effectively
- Risk assessment needs to consider all potential sources of pollution, potential pathways and receptors
- Based on available literature the biggest risks appear to be from activities on the surface, followed by lack of regulation, poor well design/completion

References

- Groat, CG and Grimshaw, TW. 2012. Fact-Based Regulation for Environmental Protection in Shale Gas Development. A report by the Energy Institute, University of Texas. <u>http://energy.utexas.edu/images/ei_shale_gas_regulation120215.pdf</u>
- Cuadrilla Resources web site. <u>www.cuadrillaresources.com</u>
- Broderick. J., et al: 2011, Shale gas: an updated assessment of environmental and climate change impacts. A report commissioned by The Co-operative and undertaken by researchers at the Tyndall Centre, University of Manchester
- Defra environmental statisitics: <u>http://www.defra.gov.uk/statistics/environment/inland-water</u>
- Environment Agency Water Resources Strategy <u>www.environment-agency.gov.uk</u>
- Osborne et al, 2011. Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1100682108
- Molofsky et al. 2011. Methane in Pennsylvania water wells unrelated to Marcellus shale fracturing. Oil and Gas Journal.
- DiGiulio, DC et al. 2011.Draft report: Investigation of Ground Water Contamination near Pavillion, Wyoming. USEPA (Region 8). EPA 600/R-00/000. <u>www.epa.gov</u>.
- Baseline the Natural Quality of Groundwater in England and Wales. A joint programme of research by the British Geological Survey and the Environment Agency.
 <u>www.bgs.ac.uk/research/groundwater</u>